在病理學(xué),、臨床診斷,、克隆和細(xì)胞生物學(xué)研究中,從大量的細(xì)胞群體中分離出小量的特殊種類細(xì)胞是一項(xiàng)很常用的技術(shù)?,F(xiàn)較為成熟的方法主要是熒光激發(fā)細(xì)胞分離法和激光捕獲微分法,,但都存在各自的不足及局限。
來(lái)自麻省理工大學(xué)的Voldman等人利用微流細(xì)胞分離儀提出了一個(gè)簡(jiǎn)便快捷,、基于圖像識(shí)別的細(xì)胞分離方法,。微流細(xì)胞分離儀裝有微孔列陣,能夠通過(guò)沉降作用來(lái)裝載哺乳細(xì)胞,,這一過(guò)程可被特制顯微鏡所探測(cè),。隨后,利用聚焦紅外激光的散射力使所要的細(xì)胞從所在的微孔中懸浮起來(lái),,進(jìn)入到一個(gè)流動(dòng)場(chǎng)中而離開列陣表面,,這樣就可以達(dá)到將其收集的目的,。
該方法提供了一個(gè)界面友好,、操作簡(jiǎn)單、方便快捷的實(shí)驗(yàn)平臺(tái),,可以分離任何在特制顯微鏡下有外觀特性的細(xì)胞,,并且能和熒光技術(shù)很好的結(jié)合使用,應(yīng)用范圍十分廣泛,。我們相信,,該項(xiàng)技術(shù)成熟化,、商品化之后,將對(duì)細(xì)胞生物學(xué)的發(fā)展產(chǎn)生重大的影響,。 (科學(xué)時(shí)報(bào) 邵振宇/編譯)
原文鏈接:http://pubs.acs.org/cgi-bin/abstract.cgi/ancham/2007/79/i24/abs/ac071366y.html
Anal. Chem., 79 (24), 9321 -9330, 2007. 10.1021/ac071366y S0003-2700(07)01366-2
Web Release Date: November 16, 2007 Copyright © 2007 American Chemical Society
Intuitive, Image-Based Cell Sorting Using Optofluidic Cell Sorting
J. R. Kovac and J. Voldman*
Department of Electrical Engineering and Computer Science, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Building 36-824, Cambridge, Massachusetts 02139
Received for review June 27, 2007. Accepted September 27, 2007.
Abstract:
We present a microfluidic cell-sorting device which augments microscopy with the capability to perform facile image-based cell sorting. This combination enables intuitive, complex phenotype sorting based on spatio-temporal fluorescence or cell morphology. The microfluidic device contains a microwell array that can be passively loaded with mammalian cells via sedimentation and can be subsequently inspected with microscopy. After inspection, we use the scattering force from a focused infrared laser to levitate cells of interest from their wells into a flow field for collection. First, we demonstrate image-based sorting predicated on whole-cell fluorescence, which could enable sorting based on temporal whole-cell fluorescence behavior. Second, we demonstrate image-based sorting predicated on fluorescence localization (nuclear vs whole-cell fluorescence), highlighting the capability of our approach to sort based on imaged subcellular events, such as localized protein expression or translocation events. We achieve postsort purities up to 89% and up to 155-fold enrichment of target cells. Optical manipulation literature and a direct cell viability assay suggest that cells remain viable after using our technique. The architecture is highly scalable and supports over 10 000 individually addressable trap sites. Our approach enables sorting of significant populations based on subcellular spatio-temporal information, which is difficult or impossible with existing widespread sorting technologies.