本期Nature發(fā)表了高粱(Sorghum bicolour)的基因組序列,。
高粱是一種谷物,作為糧食,、飼料,、纖維和燃料作物廣泛種植。它耐熱,、耐旱,,是西非薩赫勒地區(qū)很多人口的一種主食作物。將該基因組與玉米和水稻的基因組所做的對(duì)比,,為了解草本及C4植物光合作用(這種光合作用在高溫時(shí)尤其能夠高效吸收碳)的演化提供了線(xiàn)索,。另外,可能對(duì)高粱的抗旱性能有貢獻(xiàn)的蛋白編碼基因及miRNAs也可能被找到,。高粱產(chǎn)量的提高一直落后于其他作物,,其基因組序列的獲得有可能為該作物的改良產(chǎn)生非常重要的促進(jìn)作用。(生物谷Bioon.com)
生物谷推薦原始出處:
Nature 457, 551-556 (29 January 2009) | doi:10.1038/nature07723;
The Sorghum bicolor genome and the diversification of grasses
Andrew H. Paterson1, John E. Bowers1, Rémy Bruggmann2, Inna Dubchak3, Jane Grimwood4, Heidrun Gundlach5, Georg Haberer5, Uffe Hellsten3, Therese Mitros6, Alexander Poliakov3, Jeremy Schmutz4, Manuel Spannagl5, Haibao Tang1, Xiyin Wang1,7, Thomas Wicker8, Arvind K. Bharti2, Jarrod Chapman3, F. Alex Feltus1,9, Udo Gowik10, Igor V. Grigoriev3, Eric Lyons11, Christopher A. Maher12, Mihaela Martis5, Apurva Narechania12, Robert P. Otillar3, Bryan W. Penning13, Asaf A. Salamov3, Yu Wang5, Lifang Zhang12, Nicholas C. Carpita14, Michael Freeling11, Alan R. Gingle1, C. Thomas Hash15, Beat Keller8, Patricia Klein16, Stephen Kresovich17, Maureen C. McCann13, Ray Ming18, Daniel G. Peterson1,19, Mehboob-ur-Rahman1,20, Doreen Ware12,21, Peter Westhoff10, Klaus F. X. Mayer5, Joachim Messing2 & Daniel S. Rokhsar3,4
1 Plant Genome Mapping Laboratory, University of Georgia, Athens, Georgia 30602, USA
2 Waksman Institute for Microbiology, Rutgers University, Piscataway, New Jersey 08854, USA
3 DOE Joint Genome Institute, Walnut Creek, California 94598, USA
4 Stanford Human Genome Center, Stanford University, Palo Alto, California 94304, USA
5 MIPS/IBIS, Helmholtz Zentrum München, Inglostaedter Landstrasse 1, 85764 Neuherberg, Germany
6 Center for Integrative Genomics, University of California, Berkeley, California 94720, USA
7 College of Sciences, Hebei Polytechnic University, Tangshan, Hebei 063000, China
8 Institute of Plant Biology, University of Zurich, Zollikerstrasse 107, 8008 Zurich, Switzerland
9 Department of Genetics and Biochemistry, Clemson University, Clemson, South Carolina 29631, USA
10 Institut fur Entwicklungs und Molekularbiologie der Pflanzen, Heinrich-Heine-Universitat, Universitatsstrasse 1, D-40225 Dusseldorf, Germany
11 Department of Plant and Microbial Biology, University of California, Berkeley, California 94720, USA
12 Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA
13 Department of Biological Sciences,
14 Department of Botany and Plant Pathology, Purdue University, West Lafayette, Indiana 47907, USA
15 International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru 502 324, India
16 Department of Horticulture and Institute for Plant Genomics and Biotechnology, Texas A&M University, College Station, Texas 77843, USA
17 Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853, USA
18 Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
19 Mississippi Genome Exploration Laboratory, Mississippi State University, Starkville, Mississippi 39762, USA
20 National Institute for Biotechnology & Genetic Engineering (NIBGE), Faisalabad, Pakistan
21 USDA NAA Robert Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
Sorghum, an African grass related to sugar cane and maize, is grown for food, feed, fibre and fuel. We present an initial analysis of the 730-megabase Sorghum bicolor (L.) Moench genome, placing 98% of genes in their chromosomal context using whole-genome shotgun sequence validated by genetic, physical and syntenic information. Genetic recombination is largely confined to about one-third of the sorghum genome with gene order and density similar to those of rice. Retrotransposon accumulation in recombinationally recalcitrant heterochromatin explains the 75% larger genome size of sorghum compared with rice. Although gene and repetitive DNA distributions have been preserved since palaeopolyploidization 70 million years ago, most duplicated gene sets lost one member before the sorghum–rice divergence. Concerted evolution makes one duplicated chromosomal segment appear to be only a few million years old. About 24% of genes are grass-specific and 7% are sorghum-specific. Recent gene and microRNA duplications may contribute to sorghum's drought tolerance.