在最新一期的開放存取的《公共科學(xué)圖書館·生物學(xué)》雜志上,美國(guó)、英國(guó)和瑞典的研究人員公布了老鼠的全基因組測(cè)序圖。老鼠成為繼人類之后第二個(gè)完成全基因組測(cè)序的哺乳動(dòng)物。
在對(duì)人類和老鼠的基因測(cè)序圖進(jìn)行綜合性比較后,,研究人員發(fā)現(xiàn)兩者之間的遺傳差異要比人們預(yù)想的大得多。老鼠基因中有20%是新副本,,這些副本是在過(guò)去9000萬(wàn)年里演化而來(lái)的,。人類與老鼠間的大量遺傳差異很可能決定著他們的生物學(xué)差異。
此項(xiàng)研究成果填補(bǔ)了之前老鼠基因組研究的空白,,強(qiáng)化了科學(xué)家的能力,,使他們能找出最適于人類疾病的老鼠基因,也證明了如何將人類與老鼠共享的生物學(xué)特征與某一物種所特有的生物學(xué)特征區(qū)別開來(lái),。研究發(fā)現(xiàn),,這些新發(fā)現(xiàn)的基因有許多以一種不尋常的速度進(jìn)行快速演化,這很可能是由于老鼠和其生殖細(xì)胞間進(jìn)行“軍備競(jìng)賽”所致,。
該項(xiàng)計(jì)劃的領(lǐng)導(dǎo)者,、英國(guó)牛津大學(xué)的克里斯·龐亭教授稱,在幫助科學(xué)家區(qū)分那些在所有哺乳動(dòng)物中都一樣的生物學(xué)基礎(chǔ)基因,,以及那些使人類與老鼠彼此之間具有如此大差異的基因方面,,這些新發(fā)現(xiàn)極其重要。計(jì)劃的另一領(lǐng)導(dǎo)者,、美國(guó)國(guó)立衛(wèi)生研究院生物技術(shù)研究中心的戴拿·徹奇也認(rèn)為,,更重要的是,此項(xiàng)發(fā)現(xiàn)揭示了許多先前被隱藏著的老鼠生物學(xué)秘密,。(生物谷Bioon.com)
生物谷推薦原始出處:
PLoS Biol 7(5): e1000112. doi:10.1371/journal.pbio.1000112
Lineage-Specific Biology Revealed by a Finished Genome Assembly of the Mouse
Deanna M. Church1#*, Leo Goodstadt2#*, LaDeana W. Hillier3, Michael C. Zody4,5, Steve Goldstein6, Xinwe She7, Carol J. Bult8, Richa Agarwala1, Joshua L. Cherry1, Michael DiCuccio1, Wratko Hlavina1, Yuri Kapustin1, Peter Meric1, Donna Maglott1, Zo? Birtle2, Ana C. Marques2, Tina Graves3, Shiguo Zhou6, Brian Teague6, Konstantinos Potamousis6, Christopher Churas6, Michael Place9, Jill Herschleb6, Ron Runnheim6, Daniel Forrest6, James Amos-Landgraf10, David C. Schwartz6, Ze Cheng7, Kerstin Lindblad-Toh4,5*, Evan E. Eichler7*, Chris P. Ponting2*, The Mouse Genome Sequencing Consortium?
1 National Center for Biotechnology Information, Bethesda, Maryland, United States of America, 2 MRC Functional Genomics Unit, Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom, 3 The Genome Center at Washington University, St. Louis, Missouri, United States of America, 4 The Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America, 5 Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden, 6 Laboratory for Molecular and Computational Genomics, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 7 Department of Genome Sciences and Howard Hughes Medical Institute, University of Washington, Seattle, Washington, United States of America, 8 The Jackson Laboratory, Bar Harbor, Maine, United States of America, 9 Waisman Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America, 10 McArdle Laboratory for Cancer Research, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, United States of America
The mouse (Mus musculus) is the premier animal model for understanding human disease and development. Here we show that a comprehensive understanding of mouse biology is only possible with the availability of a finished, high-quality genome assembly. The finished clone-based assembly of the mouse strain C57BL/6J reported here has over 175,000 fewer gaps and over 139 Mb more of novel sequence, compared with the earlier MGSCv3 draft genome assembly. In a comprehensive analysis of this revised genome sequence, we are now able to define 20,210 protein-coding genes, over a thousand more than predicted in the human genome (19,042 genes). In addition, we identified 439 long, non–protein-coding RNAs with evidence for transcribed orthologs in human. We analyzed the complex and repetitive landscape of 267 Mb of sequence that was missing or misassembled in the previously published assembly, and we provide insights into the reasons for its resistance to sequencing and assembly by whole-genome shotgun approaches. Duplicated regions within newly assembled sequence tend to be of more recent ancestry than duplicates in the published draft, correcting our initial understanding of recent evolution on the mouse lineage. These duplicates appear to be largely composed of sequence regions containing transposable elements and duplicated protein-coding genes; of these, some may be fixed in the mouse population, but at least 40% of segmentally duplicated sequences are copy number variable even among laboratory mouse strains. Mouse lineage-specific regions contain 3,767 genes drawn mainly from rapidly-changing gene families associated with reproductive functions. The finished mouse genome assembly, therefore, greatly improves our understanding of rodent-specific biology and allows the delineation of ancestral biological functions that are shared with human from derived functions that are not.