捷克和美國遺傳學(xué)家在小鼠和果蠅身上各確定出一種基因,這兩種基因可抑制不同物種后代的繁衍能力,,推動了新物種的進(jìn)化。相關(guān)兩篇論文12月11日在線發(fā)表于《科學(xué)》(Science)雜志,。
動物間如果能進(jìn)行雜交,,且后代仍具有生育能力,那么這群動物就可以定義為同一種物種,。不同物種交配后所生的雜交動物,,如雄驢和母馬所生的騾子,一般不具備生育能力,,事實上很多這種雜交動物是無法存活的,。不過有時極相近的物種或亞種交配所生后代會具備有限的生育能力。
識別出抑制雜交后代生育能力的基因,,可以揭示促進(jìn)新物種形成的遺傳學(xué)力量,。不過,至今為止只有不到10種相關(guān)基因被確認(rèn),。
捷克科學(xué)院遺傳學(xué)家Jiri Forejt與同事一起,,在小鼠身上識別出一個抑制雜交后代生育能力的基因,這是首次在哺乳動物身上發(fā)現(xiàn)這種基因,。
通過對動物做大量的雜交繁育和遺傳學(xué)改造,以及最近才發(fā)布的全基因圖數(shù)據(jù),,F(xiàn)orejt發(fā)現(xiàn),,造成小鼠亞種雜交所生雄性后代不育的原因是一種名為Prdm9的基因。
Prdm9可編碼一種能沉默多個基因的蛋白質(zhì),,這一發(fā)現(xiàn)也證實了之前的一種猜測,,即基因外改變(epigenetic change)在物種形成中起重要作用。
在另一份研究中,,美國西雅圖Fred Hutchinson癌癥研究中心遺傳學(xué)家Nitin Phadnis與美國羅切斯特大學(xué)的H. Allen Orr,,發(fā)現(xiàn)了使兩種果蠅亞種雜交后產(chǎn)生特定后代的基因。這種特定的雜交后代為雄性,,一生中除了老年時期有部分生育能力,,其他時期都不具生育能力,且老年時期也只能生育雌性后代。
研究人員認(rèn)為,,這種特殊雜交后代的存在表明分離變相因子(segregation distorter,SD)可能與物種形成有關(guān),。分離變相因子是一種基因,它會使承載它的染色體更頻繁地傳給后代,,在此次研究中它通過控制后代性別來實現(xiàn),。
Phadnis表示,分離變相因子可能會與抑制這種分離的基因展開“軍備競賽”,,因此可能會進(jìn)化得很快,。雖然有人提出這種基因和它的抑制蛋白,可能會在導(dǎo)致物種形成的種群中引起功能性分歧(functional divergence),,但這一理論還缺乏證據(jù),。
Phadnis說:“這一研究顯示,物種形成并不僅僅是由于外部環(huán)境,,內(nèi)部遺傳環(huán)境也起了作用,。”
英國謝菲爾德大學(xué)遺傳學(xué)家Roger Butlin表示:“之前只發(fā)現(xiàn)了很少的幾個物種形成基因,多發(fā)現(xiàn)一個是很讓人激動的,,我認(rèn)為大家會對偏分離及其與物種形成的關(guān)系非常感興趣,。”
這兩項研究將為發(fā)現(xiàn)更多物種形成基因鋪平道路。Forejt已經(jīng)在努力識別更多與Prdm9一起造成雜交小鼠不育的物種形成基因,,他說其他研究人員正緊隨其后,。
美國亞利桑那大學(xué)小鼠遺傳學(xué)研究者M(jìn)ichael Nachman表示:“有了全基因序列和染色體數(shù)據(jù),識別物種形成基因工作無疑要比原來容易很多,。迄今為止發(fā)現(xiàn)的物種形成基因中,,什么種類什么功能的都有,恐怕只有發(fā)現(xiàn)更多的基因后才能看出其中的趨勢,。(生物谷Bioon.com)
生物谷推薦原始出處:
Science,,DOI: 10.1126/science.1163601,Ondrej Mihola,,Jiri Forejt
A Mouse Speciation Gene Encodes a Meiotic Histone H3 Methyltransferase
Ondrej Mihola 1, Zdenek Trachtulec 1, Cestmir Vlcek 1, John C. Schimenti 2, Jiri Forejt 1*
1 Institute of Molecular Genetics, Academy of Sciences of the Czech Republic, Videnska 1083, 142 20 Prague, Czech Republic
2 Center for Vertebrate Genomics, Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, T9014A Vet Research Tower, Ithaca, NY 14853, USA
Speciation genes restrict gene flow between the incipient species and related taxa. Three decades ago, we mapped a mammalian speciation gene, hybrid sterility 1 (Hst1), in the intersubspecific hybrids of house mouse. Here we identify this gene as Prdm9, encoding a histone H3 lysine-4 trimethyltransferase. We rescued infertility in male hybrids with bacterial artificial chromosomes carrying Prdm9 from a strain with the "fertility" Hst1f allele. Sterile hybrids display down-regulated microrchidia 2B (Morc2b) and fail to compartmentalize H2AX into the pachynema sex (XY) body.These defects, seen also in Prdm9 null mutants, are rescued by the Prdm9 transgene. Identification of a vertebrate hybrid sterility gene reveals a role for epigenetics in speciation, and opens a window to a hybrid sterility gene network.
Science,,DOI: 10.1126/science.1163934,Nitin Phadni,,H. Allen Orr
A Single Gene Causes Both Male Sterility and Segregation Distortion in Drosophila Hybrids
Nitin Phadnis 1* and H. Allen Orr 1
1 Department of Biology, University of Rochester, Rochester, NY 14627-0211, USA.
A central goal of evolutionary biology is to identify the genes and evolutionary forces that cause speciation, the emergence of reproductive isolation between populations. Despite the identification of several genes that cause hybrid sterility or inviability— many of which have evolved rapidly under positive Darwinian selection—little is known about the ecological or genomic forces that drive the evolution of postzygotic isolation. Here we show that the same gene,Overdrive, causes both male sterility and segregation distortion in F1 hybrids between the Bogota and USA subspecies of Drosophila pseudoobscura. This segregation distorter gene is essential for hybrid sterility, a strong reproductive barrier between these young taxa. Our results suggest that genetic conflict may be an important evolutionary force in speciation.