圖片說(shuō)明:眼部插入特殊蛋白能使失明小鼠恢復(fù)對(duì)光線的感覺(jué)。
(圖片來(lái)源:Punchstock)
瑞士,、美國(guó)及加拿大科學(xué)家近日研究發(fā)現(xiàn),,將一種來(lái)自藻類的光敏蛋白插入到失明小鼠的眼部細(xì)胞后,,使得它們成功地恢復(fù)了對(duì)光線的感覺(jué)。研究人員希望,,類似的方法將來(lái)可以用于治療特定種類的人類失明,。相關(guān)論文4月27日在線發(fā)表于《自然—神經(jīng)學(xué)》(Nature Neuroscience)上。
這種光敏蛋白名為channelrhodopsin-2(ChR2),,藻類用它來(lái)進(jìn)行光合作用,。一些科學(xué)家對(duì)于用它來(lái)替換動(dòng)物眼部受損或缺失的光感受器極為感興趣。在患老年黃斑變性(AMD)的人眼部,,這種光感受器的損傷尤為常見,,但是一直沒(méi)有合適的治療方法。
在最新的研究中,,瑞士Friedrich Miescher生物醫(yī)學(xué)研究所(FMI)的Botond Roska和研究小組關(guān)注的是眼部完全喪失光感受器的小鼠,。這些光感受器通常負(fù)責(zé)在視覺(jué)圖像形成之前將光輸送到雙極細(xì)胞(bipolar cells)。
研究人員使用一種無(wú)害病毒搭載ChR2進(jìn)入到小鼠的雙極細(xì)胞,。雖然以這種方式進(jìn)入的雙極細(xì)胞量只占總量的7%,,但已足夠光信號(hào)傳輸?shù)揭暰W(wǎng)膜的下一層——神經(jīng)節(jié)細(xì)胞(ganglion cells),直至最終到達(dá)大腦,。結(jié)果發(fā)現(xiàn),,當(dāng)照射燈光時(shí),與普通小鼠對(duì)光線完全無(wú)反應(yīng)相比,,黑暗中的實(shí)驗(yàn)小鼠跳躍起來(lái),,表明它們感受到了光線。
研究人員隨后對(duì)這些小鼠的視覺(jué)進(jìn)行了測(cè)試,,結(jié)果表明實(shí)驗(yàn)小鼠要?jiǎng)龠^(guò)普通小鼠,。但是實(shí)驗(yàn)小鼠的視覺(jué)恢復(fù)程度到底如何不得而知。Roska說(shuō):“畢竟,,你又沒(méi)法問(wèn)它們,。”
目前,Roska及同事已經(jīng)和一些臨床小組建立了合作關(guān)系,,以在人類身上研發(fā)這項(xiàng)技術(shù),。不過(guò)Roska表示,即使這樣,,它也很可能是最后的可供選擇的臨床方案,。他說(shuō),,如果哪怕還有一點(diǎn)點(diǎn)的視覺(jué)殘留,采用其它治療方法可能更為有效,,“這一方法應(yīng)該只適用于完全失去視覺(jué)的時(shí)候,。”(科學(xué)網(wǎng) 梅進(jìn)/編譯)
(Nature Neuroscience),doi:10.1038/nn.2117,,Pamela S Lagali,,Botond Roska
生物谷推薦原始出處:
Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration
Pamela S Lagali1,4, David Balya1,4, Gautam B Awatramani1,3,4, Thomas A Münch1, Douglas S Kim2, Volker Busskamp1, Constance L Cepko2 & Botond Roska1
Abstract
Genetically encoded optical neuromodulators create an opportunity for circuit-specific intervention in neurological diseases. One of the diseases most amenable to this approach is retinal degeneration, where the loss of photoreceptors leads to complete blindness. To restore photosensitivity, we genetically targeted a light-activated cation channel, channelrhodopsin-2, to second-order neurons, ON bipolar cells, of degenerated retinas in vivo in the Pde6brd1 (also known as rd1) mouse model. In the absence of 'classical' photoreceptors, we found that ON bipolar cells that were engineered to be photosensitive induced light-evoked spiking activity in ganglion cells. The rescue of light sensitivity was selective to the ON circuits that would naturally respond to increases in brightness. Despite degeneration of the outer retina, our intervention restored transient responses and center-surround organization of ganglion cells. The resulting signals were relayed to the visual cortex and were sufficient for the animals to successfully perform optomotor behavioral tasks.