一種能將植物廢料直接變成柴油的真菌可以讓我們不消耗糧食的情況下生產(chǎn)出生物燃料,。這種真菌就是美國科學(xué)家在巴塔哥尼亞的雨林樹木中發(fā)現(xiàn)的,叫粉紅粘帚霉,。它可以讓柴油變成氣體,,較液體燃料更加容易提煉、純化和貯存,。
發(fā)現(xiàn)此真菌的美國蒙大納州大學(xué)保茲曼分校的加里·斯托貝爾說:“地球上沒有其它已知生物能做到這個(gè),,我想此氣體混合物足可以驅(qū)動發(fā)動機(jī)。”加里在粉紅粘帚霉中確定了此柴油氣體,。此真菌生活在植物細(xì)胞之間,。他確定此真菌產(chǎn)生的此氣體能殺死其它真菌。
對此氣體成分分析表明它富含有柴油中所發(fā)現(xiàn)的碳?xì)浠衔铮缧镣?。此外,,他確定其里面還有低分子量的乙醇和酯,二者混合可以較普通柴油燃燒更清潔更有效,。這種高含量的純碳?xì)浠衔镆馕吨雀收嵘a(chǎn)的生物乙醇燃燒更好,,后者含有氧原子,因此較碳?xì)浠衔锏哪芰恳佟?/p>
纖維素紅利
其它紅利是此真菌可以生長在纖維素上,,而纖維素含有大量的碳?xì)浠衔?,但特別難分解。加里說:“纖維素是地球上最豐富的有機(jī)化合物,,但大多數(shù)給浪費(fèi)掉了,。”通過纖維素上的這種真菌發(fā)酵,可以產(chǎn)生大量現(xiàn)成的柴油氣體,。但還需要做更多的實(shí)驗(yàn)來證實(shí)此想法的可行性,。加里說:“我們將做更大規(guī)模的測試,進(jìn)行發(fā)酵后讓此真菌產(chǎn)生足夠多的柴油氣體來驅(qū)動一臺小發(fā)動機(jī),。如果我們能做到這一點(diǎn),,我們就能對它進(jìn)行交易。”
雙倍價(jià)值
加里表示此真菌有雙倍價(jià)值,,因?yàn)樗歇?dú)特的基因,,能生產(chǎn)出將纖維素分解成柴油氣體的酶。從理論上說,,當(dāng)把它嫁接到其它生物體中時(shí),,這些真菌將更加活躍,將更加有效地生產(chǎn)柴油,。另一項(xiàng)特別的可能性是燃料石油不僅僅是由有機(jī)物在高溫高壓產(chǎn)生,,還可能是微生物的杰作。加里說:“人們一直認(rèn)為所有石油是由這些地球物理學(xué)過程產(chǎn)生的,,全我們認(rèn)為還可能是由微生物過程生產(chǎn)的,。因此我們可以通過全部綠色的過程來生產(chǎn)我們的原油。”此發(fā)現(xiàn)發(fā)表在最新出版的《微生物學(xué)》雜志上,。(生物谷Bioon.com)
生物谷推薦原始出處:
Microbiology 2008 154: 3319-3328.
The production of myco-diesel hydrocarbons and their derivatives by the endophytic fungus Gliocladium roseum (NRRL 50072)
Gary A. Strobel1, Berk Knighton2, Katreena Kluck1, Yuhao Ren1, Tom Livinghouse2, Meghan Griffin3, Daniel Spakowicz3 and Joe Sears4
1 Department of Plant Sciences, Montana State University, Bozeman, MT 59717, USA
2 Department of Chemistry, Montana State University, Bozeman, MT 59717, USA
3 Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
4 Center for Lab Services/RJ Lee Group, 2710 North 20th Ave, Pasco, WA 99301, USA
An endophytic fungus, Gliocladium roseum (NRRL 50072), produced a series of volatile hydrocarbons and hydrocarbon derivatives on an oatmeal-based agar under microaerophilic conditions as analysed by solid-phase micro-extraction (SPME)-GC/MS. As an example, this organism produced an extensive series of the acetic acid esters of straight-chained alkanes including those of pentyl, hexyl, heptyl, octyl, sec-octyl and decyl alcohols. Other hydrocarbons were also produced by this organism, including undecane, 2,6-dimethyl; decane, 3,3,5-trimethyl; cyclohexene, 4-methyl; decane, 3,3,6-trimethyl; and undecane, 4,4-dimethyl. Volatile hydrocarbons were also produced on a cellulose-based medium, including heptane, octane, benzene, and some branched hydrocarbons. An extract of the host plant, Eucryphia cordifolia (ulmo), supported the growth and hydrocarbon production of this fungus. Quantification of volatile organic compounds, as measured by proton transfer mass spectrometry (PTR-MS), indicated a level of organic substances in the order of 80 p.p.m.v. (parts per million by volume) in the air space above the oatmeal agar medium in an 18 day old culture. Scaling the PTR-MS profile the acetic acid heptyl ester was quantified (at 500 p.p.b.v.) and subsequently the amount of each compound in the GC/MS profile could be estimated; allyielded a total value of about 4.0 p.p.m.v. The hydrocarbon profile of G. roseum contains a number of compounds normally associated with diesel fuel and so the volatiles of this fungus have been dubbed ‘myco-diesel’. Extraction of liquid cultures of the fungus revealed the presence of numerous fatty acids and other lipids. All of these findings have implications in energy production and utilization.