新華社東京5月9日電 (記者藍建中)日本京都大學一個研究小組在美國《干細胞轉(zhuǎn)化醫(yī)學》雜志上發(fā)表論文說,,他們利用人類胚胎干細胞成功制作出具有肌萎縮側(cè)索硬化癥(漸凍癥)特征的細胞,,這將有助于弄清該病的機制并開發(fā)治療藥物。
肌萎縮側(cè)索硬化癥俗稱漸凍癥,,是由于運動神經(jīng)出現(xiàn)障礙,,導致全身肌肉逐漸變得無力的一種疾病。漸凍癥患者約有10%屬于遺傳性患病,。由于不清楚詳細的致病原因,,醫(yī)學界一直沒有找到根治此病的方法。
在遺傳性漸凍癥患者中,,約有20%是由于“SOD1”基因變異所致,。研究小組將變異“SOD1”基因?qū)肴祟惻咛ジ杉毎蛊浞只蛇\動神經(jīng)細胞等,。結(jié)果在這些分化后的運動神經(jīng)細胞中再現(xiàn)了漸凍癥患者細胞的一些形狀、性質(zhì)特征,,比如神經(jīng)突形狀大小多變,、細胞易壞死等。
研究小組負責人中辻憲夫說,,有報告顯示,,非遺傳性的漸凍癥也與“SOD1”基因有關,期待本次開發(fā)的細胞模型在漸凍癥治療中發(fā)揮重大作用,。(生物谷:Bioon.com)
doi: 10.5966/sctm.2011-0061
PMC:
PMID:
Amyotrophic Lateral Sclerosis Model Derived from Human Embryonic Stem Cells Overexpressing Mutant Superoxide Dismutase 1
Tamaki Wadaa, Sravan K. Goparajub, Norie Tooib, Haruhisa Inouec, Ryosuke Takahashid, Norio Nakatsujib,e and Kazuhiro Aibaa,b
The generation of amyotrophic lateral sclerosis (ALS) disease models is an important subject for investigating disease mechanisms and pharmaceutical applications. In transgenic mice, expression of a mutant form of superoxide dismutase 1 (SOD1) can lead to the development of ALS that closely mimics the familial type of ALS (FALS). Although SOD1 mutant mice show phenotypes similar to FALS, dissimilar drug responses and size differences limit their usefulness to study the disease mechanism(s) and identify potential therapeutic compounds. Development of an in vitro model system for ALS is expected to help in obtaining novel insights into disease mechanisms and discovery of therapeutics. We report the establishment of an in vitro FALS model from human embryonic stem cells overexpressing either a wild-type (WT) or a mutant SOD1 (G93A) gene and the evaluation of the phenotypes and survival of the spinal motor neurons (sMNs), which are the neurons affected in ALS patients. The in vitro FALS model that we developed mimics the in vivo human ALS disease in terms of the following: (a) selective degeneration of sMNs expressing the G93A SOD1 but not those expressing the WT gene; (b) susceptibility of G93A SOD1-derived sMNs to form ubiquitinated inclusions; (c) astrocyte-derived factor(s) in the selective degeneration of G93A SOD1 sMNs; and (d) cell-autonomous, as well as non-cell-autonomous, dependent sMN degeneration. Thus, this model is expected to help unravel the disease mechanisms involved in the development of FALS and also lead to potential drug discoveries based on the prevention of neurodegeneration.