據(jù)美國(guó)物理學(xué)家組織網(wǎng)5月23日?qǐng)?bào)道,英美科學(xué)家首次精確地展示了細(xì)菌中運(yùn)送電荷的細(xì)胞內(nèi)蛋白質(zhì)分子結(jié)構(gòu),,詳細(xì)揭示了細(xì)菌如何將電子由細(xì)胞內(nèi)推到細(xì)胞外的“細(xì)枝末節(jié)”,,最新成果讓使用細(xì)菌來(lái)發(fā)電這種美好的愿景更加接近現(xiàn)實(shí),,相關(guān)研究發(fā)表在美國(guó)《國(guó)家科學(xué)院院刊》(PNAS)上。
這個(gè)發(fā)現(xiàn)意味著,,科學(xué)家們現(xiàn)在能著手研發(fā)合適的辦法,,將細(xì)菌直接“拴到”電極上,用這種方法制造出高效的微生物燃料電池。這項(xiàng)進(jìn)步也能加速清理油污染或鈾污染的微生物試劑的研發(fā),,同時(shí)也將加速由廢物提供電力的燃料電池的研制,。
細(xì)菌內(nèi)部的多層蛋白質(zhì)就像細(xì)胞的有機(jī)輸電線一樣,使細(xì)菌內(nèi)部產(chǎn)生的電子被運(yùn)送到細(xì)胞表面,。在最新研究中,,英國(guó)東安格里亞大學(xué)生物科學(xué)學(xué)院的教授湯姆·克拉克領(lǐng)導(dǎo)的英美科研團(tuán)隊(duì),使用名為X射線結(jié)晶學(xué)的方法揭示了一種依附于海洋細(xì)菌細(xì)胞表面的蛋白質(zhì)的分子結(jié)構(gòu),,細(xì)菌通過(guò)這個(gè)細(xì)胞轉(zhuǎn)運(yùn)電子,。
克拉克表示:以前我們并不知道細(xì)菌內(nèi)的電子是如何到達(dá)細(xì)胞表面的,最新發(fā)現(xiàn)向我們展示了細(xì)菌將電子從細(xì)胞內(nèi)推到細(xì)胞外的“細(xì)枝末節(jié)”,。細(xì)菌可以吸進(jìn)氧化物礦物質(zhì)中的有機(jī)碳分子并在細(xì)胞內(nèi)部“消化”它們,,接著釋放出電子。因此,,細(xì)菌坐在巖石上并吸進(jìn)巖石的過(guò)程可以應(yīng)用于電極上,,細(xì)菌能依靠電極呼吸并產(chǎn)生電子。精確展示這個(gè)過(guò)程讓我們可以“順藤摸瓜”,,進(jìn)一步研制出高效的微生物燃料電池等,。
以前,科學(xué)家們?cè)噲D利用細(xì)菌表面的電力,,但只能得到很少的電力,,現(xiàn)在,利用這一最新發(fā)現(xiàn),,科學(xué)家們有望獲得足以投入實(shí)際應(yīng)用的電力,。克拉克說(shuō):“我們所做的只是改變細(xì)菌生活的表面環(huán)境而已,。”
英國(guó)生物技術(shù)和生物科學(xué)研究院(BBSRC)和美國(guó)能源部對(duì)該科研項(xiàng)目提供了資助,,美國(guó)能源部西北太平洋國(guó)家實(shí)驗(yàn)室的科學(xué)家也參與了該項(xiàng)目。(生物谷Bioon.com)
生物谷推薦原文出處:
Proceedings of the National Academy of Sciences DOI: 10.1073/pnas.1017200108
Structure of a bacterial cell surface decaheme electron conduit
Clarke, Thomas A.; Edwards, Marcus J.; Gates, Andrew J.; Hall, Andrea; White, Gaye F.; Bradley, Justin; Reardon, Catherine L.; Shi, Liang; Beliaev, Alexander S.; Marshall, Matthew J.; Wang, Zheming; Watmough, Nicholas J.; Fredrickson, James K.; Zachara, John M.; Butt, Julea N.; Richardson, David J.
Some bacterial species are able to utilize extracellular mineral forms of iron and manganese as respiratory electron acceptors.In Shewanella oneidensis this involves decaheme cytochromes that are located on the bacterial cell surface at the termini of trans-outer-membraneelectron transfer conduits. The cell surface cytochromes can potentially play multiple roles in mediating electron transferdirectly to insoluble electron sinks, catalyzing electron exchange with flavin electron shuttles or participating in extracellularintercytochrome electron exchange along “nanowire” appendages. We present a 3.2-? crystal structure of one of these decahemecytochromes, MtrF, that allows the spatial organization of the 10 hemes to be visualized for the first time. The hemes areorganized across four domains in a unique crossed conformation, in which a staggered 65-? octaheme chain transects the lengthof the protein and is bisected by a planar 45-? tetraheme chain that connects two extended Greek key split β-barrel domains.The structure provides molecular insight into how reduction of insoluble substrate (e.g., minerals), soluble substrates (e.g.,flavins), and cytochrome redox partners might be possible in tandem at different termini of a trifurcated electron transportchain on the cell surface.